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An experimental study of a boundary layer that
is maintained on the verge of separation
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A boundary layer maintained as close as possible to separation over an extended
distance was produced, in accordance with the concept of Stratford. The resulting
layer was two-dimensional in the mean, had nearly a constant shape factor of
2.5 and approximately linear streamwise growth of its integral length scales. The
flow exhibited a definite non-equilibrium character, indicated by the different scales
required for collapse of the mean velocity and turbulence intensity profiles. It was also
very sensitive to the thickness of the upstream boundary layer. External excitation was
imposed for diagnostic purposes and as a tool for delaying separation. The oscillatory
momentum level of cµ ≈ 0.1% was tested for its ability to increase the skin friction
cf at the prescribed geometry. Various frequencies, corresponding to the Strouhal
number 0.008 < fθ0/Uref < 0.064, were used for the free stream reference velocity
of Uref = 15 m s−1 and for two different inflow conditions. Notable increase (close
to 60%) in cf was observed at higher frequencies that did not undergo maximum
amplification. The increase in cf was accompanied by a reduction in the boundary
layer thickness and in the shape factor H . The latter decreased in one case from 2.5 to
2.1. The overall turbulence level in the boundary layer decreased due to the addition
of plane external perturbations.

1. Introduction
The behaviour of boundary layers subjected to severe adverse pressure gradient is of

great technological interest. Adverse pressure gradients occur whenever a solid surface
turns away from the mean flow direction, as it does near the trailing edges of airfoils or
at the termination of streamlined bodies such as submarines or ships. Adverse pressure
gradients also occur in diverging channels, exemplified in aeronautical applications
by inlets to engines. It is generally desirable to minimize the distance over which
the deceleration takes place but this desire is tempered by the requirement to avoid
separation and flow reversal. For example, airfoil designers would like to minimize
the length of the pressure recovery section in order to maximize the fraction of the
airfoil chord that can sustain natural laminar flow. For streamlined bodies, a rapid
truncation provides more useable volume per unit surface area and greater structural
efficiency. For diffusers, a reduction in duct length reduces weight and lost volume.

Separation results in large total pressure losses, buffet, loss of lift and loss of control.
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It has to be avoided but so does a conservative, large and overweight design. These
competing priorities have led several investigators to examine the largest adverse
pressure gradient that can be sustained without causing separation. Stratford (1959a)
proposed that a turbulent boundary layer providing a maximum rate of pressure
recovery has to have a zero wall stress over its entire length. He began by conceptually
dividing the velocity profile into two parts: an outer part, that merely loses dynamic
head in direct proportion to the increase in static pressure, and an inner part that
maintains an equilibrium between the transverse gradient of the shear stress and the
stream-wise pressure gradient. The mixing length hypothesis was invoked as well as
some assumptions about the general shape of the velocity profile in order to derive
an equation for the pressure recovery that corresponds to an imminent, continuous
separation. In Stratford (1959b) this analysis was backed by an experiment in which
a stable turbulent boundary layer with a ‘near zero skin friction’ was generated.
Stratford’s experiment was limited by the available instrumentation (Pitot tubes) and
was marred by a lack of two-dimensionality. The concept, however, lead the way to a
novel design of airfoils for high lift (Liebeck 1973) because it provides the maximum
pressure rise that a boundary layer can sustain without separation, in the shortest
possible distance.

Spangenberg, Rowland & Mease (1967) attempted to produce such a flow on
a flat surface by using a vented wind-tunnel wall and an adjustable ‘end-gate’ at
the end of their test section. Their results cast doubt on some of the theoretical
claims of Stratford, particularly with regard to the existence of a region of linear
variation of the dynamic head with increasing distance from the wall. Furthermore,
they produced two very different sets of data with approximately the same pressure
distribution suggesting that, in addition to factors usually considered, the inflow
conditions influence the behaviour of the boundary layer near separation. Notably,
the case with lower skin friction exhibited greater loss of mean kinetic energy.

Dengel & Fernholz (1990, hereafter referred to as DF) examined the sensitivity of
a turbulent boundary layer near separation to small differences in pressure gradient
by using the same technique as Spangenberg et al. (1967). Their measurements
were carried out on a large cylinder thus reducing the difficulties associated with
two-dimensionality. One of their tests generated a region where the boundary layer
possessed a zero averaged skin friction. In this region, the flow reversed its direction
next to the surface roughly 50% of the total time. Another experiment of note is
by Skare & Krogstad (1994, hereafter referred to as SK) who concentrated on the
equilibrium aspects of a boundary layer that is subjected to a severe adverse pressure
gradient but does not approach separation. Their measured skin friction coefficient,
cf , in the region of interest was 5.7 × 10−4 and the shape factor of the boundary
layer H = 2. It is worth noting that only Stratford made his measurements on the
boundary layer evolving over the curved surface. There are many other experiments
focusing on the process of separation (e.g. Perry & Schofield 1973; Simpson 1989;
Patrick 1987) but they will not be discussed in the present context. The purpose of
the research to be described is to consider the boundary layer that is maintained
on the brink of separation without actually detaching fully from the surface over a
significant distance or time. The measurements were conducted on a curved surface
in parallel with numerical experiments of H. Fasel and closure models of C. Speziale
in the hope that the data be used to validate models needed to simulate flows in large
adverse pressure gradients.

All the experiments involving active control of separation were carried out on
conventionally designed airfoils, wings or diffusers. Separation occurred naturally at
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off-design conditions due to excessive incidence, flap deflections, too low Reynolds
numbers or too high Mach Numbers. Active flow control (AFC, Wygnanski 1997)
enabled the flow remain attached beyond the conventional design limits of the
prescribed configuration and thus improve the performance.

A historical perspective on many aspects of flow control is documented in the
books edited by Lachmann (1961) and written by Chang (1976). More recent surveys
on passive and active flow management methods were carried out by Gad el Hak
& Bushnell (1991) and by Fernholz (1993). Both articles discuss active and passive
management techniques of turbulent shear flows and their respective merits. All,
however, take the design of a wing, an airfoil or a streamlined body, that was based
on a steady flow assumption as given. They reveal, therefore, that active flow control
is only a concept but not a technology because it does not provide an engineer with
integrated design criteria that optimize the shape of a streamlined body with built-in
actuators for prescribed actuation levels and frequencies.

The present experiment also describes the effects of periodic excitation on the
boundary layer parameters such as skin friction and shape factor under prescribed
boundary and inflow conditions. It is but a first step in the process of determining
the optimum shape of the surface that is capable of maintaining a boundary layer on
the brink of separation for a prescribed level of periodic excitation. In the next step
the original parameters of the flow will be restored (while maintaining the external
actuation) by changing and adjusting the geometry of the surface.

2. Apparatus and experimental conditions
The experimental facility consists of a two-dimensional contraction, a constant-area

throat, and a two-dimensional variable-geometry expansion inserted into the 0.61 m
by 0.92 m test section of a closed-loop, low speed wind tunnel at the University
of Arizona (figure 1). The expansion is constructed of 3.2 mm thick Lexan and is
supported by six electric actuators. The actuators are driven by step motors via lead-
screws. This allows precise computer controlled motion of the surface. The gimbals
allow the surface geometry to be varied over very wide limits in both the streamwise
and cross-stream directions.
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The transition between the throat and the test surface is accomplished by means of
a 15.24 cm diameter cylinder. The cylinder is also provided with an electric actuator
that enables the initial slope of the test surface to be changed. This cylinder causes the
form of the adverse pressure gradient to deviate somewhat from the ideal Stratford
pressure distribution, which is discontinuous at the initiation of the adverse pressure
gradient. The present geometry is, however, more representative of likely applications.
The shape of the flexible surface is approximately described by the following:

case A Y = 0.39696 + 0.38091X − 8.925× 10−5X2 − 6.8277× 10−6X3,

where X and Y are defined in this context as being parallel and normal to the
floor of the tunnel, respectively, and are measured from the beginning of the flexible
surface. For all measurements reported here the velocity in the tunnel was set at
Uref = 15 m s−1, measured by a Pitot tube in the constant-area throat section of the
test apparatus (figure 1) and sufficiently far upstream of the divergence. Since the flow
accelerated near the initiation of the divergence, the inflow conditions were specified
at a location at which the free stream velocity (in the absence of excitation) reached
its maximum value, U0 (see § 4). Streamline coordinates (x, y) are used to analyse the
data; thus the initial momentum thickness of the boundary layer

θ0 =

∫
U

U0

(
1− U

U0

)
dy

measured at the x-location where the free-stream velocity was U0, was 2.3 mm. Many
distances in the direction of streaming are referred to the virtual origin of the flow,
x0, where the extrapolated curve of the local momentum thickness, θ, would have
vanished.

The significance of changing the inflow conditions on the evolution of the ensuing
boundary layer was also assessed in this experiment. Roughness strips glued to the
narrow, straight surface upstream of the divergent section (figure 1) changed θ0 from
2.3 mm to 4.5 mm. Thereafter the shape of the divergent surface had to be adjusted
slightly to maintain the flow on the verge of continuous separation. The shape of the
new configuration is

case B Y = 0.35189 + 0.40782X − 1.33× 10−3X2 − 1.03879× 10−7X3.

All the data required for making the balance of turbulent energy were for case A. The
data were generally acquired at a frequency of 2 KHz but for assessing the dissipation
the sampling rate this was increased to 20 KHz.

Preliminary work indicated that sidewall interference was likely to pose a significant
difficulty because the interaction of the boundary layer on the sidewalls with the
boundary layer on the test surface causes premature separation. This was initially
avoided by adding fences to both sides of the test surface, thereby initiating a fresh
boundary layer at the leading edge of the fence. Although this provided a solution
to the problem, it did not ensure success at various inflow conditions. Therefore a
narrow suction slot was cut into each sidewall, at the start of the expansion section
and was connected to an independent low pressure source. This arrangement allowed
the sidewall boundary layers to be removed, maintaining two-dimensional flow even
at the most distant measuring location downstream. This was checked in several ways;
by using multiple static pressure taps distributed along the span, by measurements of
W and measurements of u′w′, and by integration of the two-dimensional boundary
layer equations to obtain the value of u′v′ that agrees with direct measurement.
The mean value of the spanwise component of velocity did not exceed 1% of the
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Figure 2. Spanwise and longitudinal Reynolds stresses for different downstream locations.

streamwise mean velocity at any measured location. Given the uncertainty in the
probe angle with respect to the mean flow it was concluded that the spanwise mean
velocity component was essentially zero. The value of the spanwise Reynolds stress,
u′w′, is presented in figure 2. The peak of this quantity is more than one order of
magnitude smaller than the peak of the corresponding longitudinal quantity in spite
of the presence of streamwise vortices arising from the concave curvature of the
surface. Finally, the Reynolds stress calculated by integrating the two-dimensional
momentum equation (5.2), using the measured streamwise component of velocity U,
the continuity equation V (y) = − ∫ y

0
(∂U/∂x)dy, and the measured normal stresses

(u′2 − v′2), agrees very well with the directly measured Reynolds stress (figure 2). All
these tests confirm the two-dimensionality of the flow and prove the reliability of the
measurements.

The pressure distribution was initially obtained by increasing the divergence of the
surface until any further increase led to total separation. At each stage of increased
divergence it was necessary to determine the asymptotic value of the sidewall suction.
This was done by placing a hot-wire probe at the most downstream location used
in the experiment and varying the suction until further increases did not alter the
observed velocity. Any attempt to increase the rate of pressure recovery beyond this
value was unsuccessful regardless of the level of suction from the sidewalls. Tufts
glued to the surface of the ramp indicated that periodic back-flow was present.

The high turbulence intensity and the sensitivity of the flow to external disturbances
demanded a special support for the probe holders used in the study. The support
must have a high stiffness to mass ratio, minimal blockage, and the ability to vary the
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Figure 3. Deceleration of the flow for the thin inflow condition (case A).

probe angle (to calibrate x-wire probes and to allow for wall curvature). The support
is of an open, girder construction originally proposed by D. W. Bechert (private
communication) and it is essentially immune to aeroelastic vibrations.

Previous experimental observations (Simpson 1989) suggested that prior to complete
separation from the surface, there is a region where the mean flow still proceeds
downstream but in which the turbulent fluctuations produce periods of reversed flow.
The fraction of time that the flow proceeds upstream in a region close to the wall,
γ, has been used to define the mean separation location. A common formulation is
that incipient detachment has occurred when the probabilities of forward and reverse
flow are equal (Simpson 1989). This definition was deemed most appropriate when
attempting to reproduce a boundary layer matching the Stratford concept. However,
it proved to be unworkable because the flow is sensitive to random perturbations
in the laboratory and could detach itself suddenly without apparent cause. We had
therefore to content ourselves with a flow that was stable but was close enough to
separation. The proximity of the flow to separation was therefore determined from
the mean velocity profiles plotted in wall coordinates.

The deceleration of the flow for the thin inflow condition (case A) is shown in figure
3. The close agreement between the velocity inferred from the pressure distribution
and the external velocity measured with a hot wire indicates that the boundary layer
approximation can be applied.

Harmonic oscillations were introduced to the flow field through a thin slot close to
the initiation of the adverse pressure gradient. Although these oscillations originated
from a loudspeaker located on top of the settling chamber, they emerged as vortical
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Figure 4. The effect of external excitation on the inflow conditions.

perturbations in the flow. All efforts were made to seal the settling chamber and
provide two-dimensional perturbations with zero net mass flux.

The inflow conditions for all forcing frequencies are shown in figure 4. For the
determination of the forcing level, the distribution of the phase-locked and ensemble-
averaged r.m.s. value of the streamwise velocity component was integrated with
respect to the normal coordinate. The integral value was then normalized by the
momentum deficit at this location

cµ =

∫ ∞
0

u′2 dy

U2
0θ0

. (2.1)

A value of cµ ≈ 0.1% was achieved for all forcing frequencies regardless of the
differences in the detailed distribution of the phased-locked amplitudes near the slot
(figure 4b). The value of θ0 near the slot was obtained from extrapolation of the
momentum thickness, measured while the flow was not forced, to the location at
which the free-stream velocity attained its maximum value, U0 (this gave θ0 = 2.3 mm
for case A and 4.5 mm for case B).

3. Instrumentation and data reliability
The primary instrument used for the study was the constant-temperature hot-wire

anemometer (HW). Single, normal wires and x-wire arrays were used and the data
were sampled at 2 KHz except for dissipation measurements where the sampling rate
was increased to 20 KHz. This instrument remains the best choice when a statistical
description of the flow is required, in spite of the availability of a laser Doppler
velocimeter (LDV) and a particle image velocimeter (PIV). The overall reliability of
the hot-wire data was demonstrated in figure 2 where balance of the momentum
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equation provided a good comparison between the measured and the calculated
Reynolds stress. However, the instantaneous velocity vector can deviate significantly
from the mean flow direction close to the surface. Special care was therefore taken
with the calibration of the x-probes that measured the V component of velocity. In
particular, it was desirable to extend the calibration over the full effective range of
a 45◦ x-wire sensor (i.e. to ±40◦). In order to obtain acceptable accuracy a look-up
table approach, derived from Leupetow, Bruer & Haritonidis (1988) was adopted for
calibrating the x-wire. This technique involves the use of successive polynomial fits to
the raw calibration data in order to characterize the U and V velocity components in
terms of the two wire voltages. One may also compare the results obtained with an x-
wire to results obtained by a single-wire probe for the streamwise velocity component.
The agreement between the two sets of data was excellent, providing some validation
of x-wire calibration technique.

Finally, the normally operated stationary hot-wire probe cannot recognize flow
reversal and it rectifies the voltage output. The calibration technique allows points
exceeding the angular limits of the calibration to be readily identified. The fraction
of time that the angle between the instantaneous velocity vector and the hot wire ex-
ceeded the calibration limits is negligible provided y/θ > 0.25. This fraction increases
rapidly below y/θ = 0.25 but at this level the hot-wire probe remains within the
calibration limits 93% of the time. Although it is clear that the region of uncertainty
is so thin (y/θ < 0.25) that it is insignificant in the overall momentum budget and
scaling considerations, a detailed comparison between data obtained with a single hot
wire and an LDV was made. A single wire that was parallel to the surface was chosen
for the test because of its small size and its ability to be brought very close to the solid
surface. Simultaneous measurements of mean velocity with both instruments validated
the data taken earlier with hot wires only (figure 5). There is an excellent agreement
between the mean velocity profiles acquired with the LDV and the hot wire even
in regions that are very close to the wall. The LDV was able to provide sufficiently
accurate, high-resolution data in the linear region next to the surface (figure 5a), from
which the friction velocity, uτ =

√
τw/ρ, could be estimated (u2

τ = v∂U/∂y). However,
the value of uτ obtained in this way was somewhat higher (by approximately 10%)
than the one obtained by using the Clauser method (i.e. the universal, logarithmic law
of the wall). Using the friction velocity estimated from figure 5 the short logarithmic
relation fitting the data is u+ = 5.5 log y+ + 2. The agreement between the hot wire
and the LDV data when both are plotted in wall variables (see figure 5b) is impressive
in view of the anticipated adverse effects resulting from hot-wire rectification. The
distributions of the streamwise component of the velocity fluctuations are plotted in
figure 5(c). The r.m.s. values measured by the LDV system are higher in general, since
flow reversal is now taken into account. Surprisingly however, the differences are not
large, indicating that the flow reverses relatively rarely. The comparison between the
hot-wire data and the LDV was repeated at five different streamwise locations with
equally good results.

The surface pressure distribution was obtained by connecting a pressure transducer
to surface-pressure taps via a Scannivalve. Pressure taps were placed in three parallel
rows along the expansion for additional confirmation of two-dimensionality.

4. Mean flow
The development of the mean flow in the direction of streaming for the two initial

conditions (cases A and B) considered, is shown in figure 6. The streamwise distance
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is measured from a virtual origin defined by extrapolating the momentum thickness,

θ =

∫
U

Ue

(
1− U

Ue

)
dy,

to zero (where Ue is the local free-stream velocity). The reference velocity and length
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scales used throughout this article are defined as the maximum measured free-stream
velocity, U0, and the extrapolated momentum thickness, θ0, at the location of the
free-stream velocity maximum, respectively. The flow accelerated upstream of the
ramp, resulting in values of U0 = 17.8 m s−1 and 16.7 m s−1 with corresponding
values of 2.3 mm and 4.5 mm for θ0, for the two cases A and B considered. This is
some 15–20% higher than the 15 m s−1 measured by the Pitot tube that was located
further upstream in the throat, suggesting that the transition from the flat surface to
the ramp was perhaps too rapid when compared to an ideal airfoil design using the
Stratford concept. The distance between the location at which the free-stream velocity
is maximum and the virtual origin of the flow where θ = 0 (located at x = −0.133 m)
is denoted by x0.

The free-stream velocity varies as (x− x0)
−0.21 and (x− x0)

−0.18 for cases A and B
respectively when the streamwise distance is measured from the virtual origin (figure
6). The results presented cover a distance of approximately 200 θ0. Over that distance
the free-stream velocity, Ue, was reduced by 12% from its initial reference velocity
value U0. The data presented by DF span a distance over which the free-stream
velocity decelerated by 4% only. The equilibrium region in SK’s experiment covered
a distance of ∆x/θ0 = 57 corresponding to a deceleration ∆Ue/U0 = 6.7%.

The flow spreads out linearly with increasing x (e.g. dθ/dx = constant, figure 6).
The initial thickness of the boundary layer has, however, an enormous effect on the
flow divergence although the difference in the pressure gradient between cases A and
B is small. The sensitivity of the flow to the initial boundary layer thickness can be



A boundary layer maintained on the verge of separation 237

explained by using the momentum integral equation:

dθ

dx
+ (H + 2)

θ

Ue

dUe

dx
=
cf

2
, (4.1)

where the experimental data give: θ ∝ x and Ue ∝ x−n and the skin friction cf → 0.
The group (H + 2)θ/Ue dUe/dx = constant also represents the rate of spread of this
boundary layer. Substituting the measured values for H and n, one gets

(dθ/dx)B = 1.72(dθ/dx)A.

The experimental comparison of the growth rate of θ between cases A and B yielded
a slightly larger constant of 1.84 instead of the 1.72 anticipated. We should mention
that the virtual origins for both flows were almost identical.†

The sensitivity of this boundary layer to inflow (upstream) conditions sheds some
new light on previous observations and explains some of the discrepancies among
them. Spangenberg et al. (1967) generated two very different boundary layers (the
differences were most apparent in the turbulent intensities measured and in their
distribution across the flow) by changing the upstream pressure gradient very slightly.
DF made similar observations; since they had a fine control over their upstream
pressure gradient they could change the sign of cf by this procedure. In the region in
which measurements were presented (i.e. for x > 1.13 m) the pressure gradient for all
three cases they considered was identical. The slight differences in the upstream pres-
sure gradient that they introduced altered the initial thickness of the boundary layers
(see figure 3 of DF) and thus changed the character and direction of the entire flow.

The assumption that the initial thickness of such a boundary layer represents the
most significant parameter governing its growth enabled us to collapse the rate of
spread of the dimensionless (θ/θ0) of DF, SK and the present two experiments, onto
a single curve (figure 7). The displacement thickness, δ∗ =

∫
(1 − U/Ue)dy, that also

spreads out linearly in the direction of streaming, is plotted in figure 6. Its rate
of spread is almost twice as large for case B than for case A, nevertheless (δ∗/θ0)
collapses the present experimental results onto those of DF (figure 7). The results
of SK are somewhat lower because their flow was not on the verge of separation.
Their shape factor, H = δ∗/θ, was approximately 2 while for the present data H
varies slightly with distance and with the case being considered. The assumption of
a constant shape factor of 2.45 and 2.55 for case A and B respectively represents
most of the data. These values of the shape factor are in close agreement with the
observations of Stratford (1959b) and have been traditionally used as a criterion for
separation.

Mean velocity profiles are presented in figure 8 for cases A and B: but the symbols
plotted are for case B only; the mean velocity profiles for case A are represented by
the dash-dot line. The mean velocity profiles appear to be approximately self-similar
when scaled by the local external velocity, Ue, and the boundary layer momentum
thickness. The mean velocity gradient near the wall is small but finite and it is slightly
larger for case A (see insert in figure 8) suggesting that the flow in case B is closer
to separation. Spangenberg et al. (1967) also observed a finite velocity gradient near
the surface. When the mean velocity profiles are plotted in wall variables, using

† One of the reviewers brought to our attention the similarity analysis of George & Castillo
(1993) and Castillo & George (2000) who used a different similarity analysis and a different length
scale. After the preparation of this paper we recast some of our data in those variables in order
to provide a more meaningful discussion of those scales in the future. The results are given in the
Addendum.
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the Clauser method to define a friction velocity uτ (figure 9a), a very large wake
component emerges. The value of u+ = U/uτ, near the edge of the boundary layer
indicates the imminence of the approaching separation. While values ranging from
70 to 80 were observed in case A, they reached 95 for case B data, both numbers
comfortably exceeding the values of uτ obtained by Spangenberg et al. (1967). The
largest value of u+ for a zero-pressure-gradient boundary is approximately 25. These
results were obtained by assuming, a priori, that the inner part of the velocity profiles
obeyed the universal law of the wall. In that respect they differ from the velocity
profile presented in figure 5(b), where uτ was estimated from the linear part of the
law of the wall measured using a LDV.

The entire velocity profile could be adequately represented by Coles’ law of the
wake, i.e.

u+ = 5.5 + 5.5 log10

(yuτ
ν

)
+Π sin2

(πy
2δ

)
. (4.2)

Nishri (1996) found that Π is a linear function of (cf)
−1/2. The results of the present

experiment appear to confirm this conclusion (figure 9b). It should be noted, however,
that the law of the wake did not match the experimental profile very well at the first
measurement station. The variations in the shape factor and the friction coefficient
with x are shown in figure 9(c). Ideally both H values should be constant when cf → 0;
although they are not, their variation with x is small. It is clear that a decrease in cf
is accompanied by an increase in H . There is a difference in the estimated values of cf
between case A where cf = 3.4×10−4 and B where cf = 2.5×10−4. The very low skin
friction described allows one to neglect the right-hand side of the integral momentum
equation (4.1). Substitution of the experimental values for H , for θ and for dθ/dx
into this equation with cf = 0 implies that Ue ∝ x−0.22 for case A. This result is in
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good agreement with the experimental value, suggesting that the flow is adequately
two-dimensional. Further checks on flow two-dimensionality will be described below.

5. Turbulence intensities and scaling
The intensities of the normal and longitudinal components of the turbulent fluctu-

ations are plotted in figure 10(a, b) using the same length and velocity scales that were
used for the mean velocity profile. In contrast to a zero-pressure-gradient boundary
layer, there is very little turbulent activity close to the wall; the largest turbulence
intensity occurs close to the inflection of the mean velocity profile. The field is highly
anisotropic with the longitudinal component of the turbulence intensity for case A
being three times greater than the transverse component. The locally normalized
turbulence intensity increases with downstream distance and the location of its maxi-
mum moves further away from the surface. The Reynolds stresses behave in a similar
manner although they seem to increase more moderately with x than u′2/U2

e does
(figure 10c). The turbulence, therefore, is not in equilibrium with the mean flow.

Since the mean velocity profile is approximately self-similar, i.e.

U

Ue

= f′
(y
θ

)
, (5.1)

the scaling of the Reynolds stress and turbulent intensities should be determined by
substituting (5.1) into the two-dimensional mean momentum equation

U
∂U

∂x
+ V

∂U

∂y
+

∂

∂x

(
u′2 − v′2

)
+

∂

∂y
u′v′ −Ue

dUe

dx
= 0. (5.2)
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The equation that results from this substitution is

Ue

dUe

dx
(f′2 − ff′′ − 1)− U2

e

θ

dθ

dx
ff′′ +

∂

∂x

(
u′2 − v′2)+

∂

∂y
u′v′ = 0. (5.3)

By assuming that the similarity scales can be expressed by power laws of x, i.e.
Ue ∝ x−n and θ ∝ xm, then

Ue

dUe

dx
∝ U2

e

θ
∝ x−2n−1,

implying that, even if similarity of the inertial terms holds true, it does not provide
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information about the rate of spread of the momentum thickness m. Experiments
clearly indicate that θ ∝ x and therefore (U2

e /θ)dθ/dx should vary as x−1.42 for case
A and as x−1.36 for case B. In order to determine m an assumption must be made
about the development of the Reynolds stress. The generally accepted choice is

u′v′ = U2
e g12(y/θ) (5.4)

because in the traditional self-similar equilibrium flows all turbulent quantities scale
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in the same way as the inertial terms (the analysis of Castillo & George is excepted).
Examination of the data (figure 10) reveals, however, that this is not appropriate. An
alternative representation,

u′2 = U2
0g11(y/θ), v′2 = U2

0g22(y/θ), u′v′ = U2
0g12(y/θ), (5.5)

collapses the maxima of the normal stresses (e.g. (u′2/U2
0 )max) onto a single value that

does not occur at a single (y/θ) location; however, it also implies that m = 2n + 1,
which contradicts the observation that θ ∝ x (i.e. m = 1).

The approximate exponent for which the divergence of the maxima in the turbulence
intensities away from the surface with increasing x stops was found to be θ1.2, provided
only two significant figures were considered. This dependence on θ may be obtained
by multiplying the non-dimensional (y/θ) location used for the mean velocity profiles
by a local Reynolds number (Reθ = Ueθ/ν), raised to the −0.2 power. Figure 11
demonstrates the improvement in the non-dimensional turbulence profiles when the
new length scale is combined with U0 (a constant velocity) as the velocity scale. The
turbulence intensity measured for case B also scaled with the same variables; however,
it was 40% higher (figure 11a). This implies that identical scaling is applicable to
both cases although the proportionality constants may differ depending on the inflow
conditions (i.e. θ ∝ x; θA = CAx and θB = CBx).

For consistency reasons one may assume that the turbulent length scale is also
appropriate for scaling the mean velocity profile, i.e.

U

Ue

= f′
(y
θ
Re−0.2

)
= f′(cyx−k) (5.6)

and substitute (5.6) into the two-dimensional mean momentum equation to give

Ue

dUe

dx
(f′2 − ff′′ − 1)− CU

2
e

θ

dθ

dx
ff′′ +

∂

∂x
(u′2 − v′2) +

∂

∂y
u′v′ = 0, (5.7)

where C is a constant depending on c and k defined in equation (5.6). This equation
still scales the inertia terms in the same way as before, however,

Ue

dUe

dx
∝ U2

e

θ

dθ

dx
∝ x−1.4 (5.8)

and it leads to the requirement that (∂/∂y)(u′v′) ∝ x−1.4. The intensity scale that
satisfies this requirement is the product of the reference velocity and the local external
velocity, U0Ue (i.e. u′v′ = U0Ueg12((y/θ)Re−0.2), see figure 11(d).

Figure 12 depicts the mean velocity profiles when scaled by the turbulent length
scale L = θRe0.2

θ . Although the similarity of the inner region is improved, the outer
part of the profile shows some deviation from similarity, particularly for case A. The
data for case B are displaced and agree quite well with the proposed scaling. In this
case the similarity of the outer flow is better. The deviations from self-similarity may
be due to the normal stress terms, which are relatively important in the present flow.
The intensity scale used for the turbulent fluctuations implies that

∂

∂x
(u′2 − v′2) ∝ x−1φ

(y
θ
Re−0.2

θ

)
, (5.9)

and it is not consistent with the development of the inertial terms and the Reynolds
stress. The normal stress term (5.9) is often neglected in boundary layer flows because
of the boundary layer approximation and the tendency of turbulent flow to isotropy.
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and a constant velocity U0.

In this case, however, it contributes as much as 30% to the momentum budget (see
figure 2).

The fact that the turbulence intensity, the Reynolds stress and the mean velocity
do not share a common velocity scale indicates a lack of local equilibrium between
the mean flow and the turbulent motion. Thus the flow is not self-preserving in the
sense suggested by Townsend. The present scaling is consistent with the momentum
equation and it may be associated with the curvature of the surface. There is also
a reorganization among the energy-containing eddies because the simple Reynolds

stress correlation u′v′/(
√
u′2
√
v′2) is neither a constant across the flow as it is in

absence of pressure gradient (i.e. u′v′/(
√
u′2
√
v′2) ≈ 0.4) nor does it remain constant

with increasing downstream distance. This is also inconsistent with the assumptions
made in simple turbulence models (Bradshaw, Ferriss & Atwell 1967) and implies
that the phase relation between the u′ and v′ fluctuations is constantly changing in
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this flow. For this reason the quantity (U0/Ue)u′v′/(
√
u′2
√
v′2) is plotted in figure 13.

The similarity of these data is consistent with the above-mentioned scaling and it
implies a preferred stretching of the larger and more energetic spanwise eddies.

The skewness factor of the velocity fluctuations is plotted in figure 14 (the subscript
1 corresponds to the streamwise velocity component; 2 corresponds to the normal
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component). A non-zero value of this quantity indicates that the probability density
function of the fluctuations is non-Gaussian. The skewness profiles exhibit good
similarity when the turbulence length scale is used for their normalization; the large
increase of the skewness very close to the wall may be partially due to the influence
of rectification of the hot-wire sensor. The next higher statistical moment, the flatness
factor, is shown as figure 15. A deviation of this value from the Gaussian value of 3 is
frequently used as an indicator of intermittency or of the presence of large coherent
structures. The reasonable collapse of this quantity when using the turbulence length
scale supports the conclusion that the mean coordinate of the laminar–turbulent
interface normalized by the local disturbance thickness increases in the streamwise
direction. This, in turn, suggests that the scale of the large eddies grows more rapidly
than the boundary layer thickness.

The advection speed of the turbulent eddies was measured using the time–space
correlation technique at four different downstream locations and at two different
normalized y coordinates (figure 16). The results show that eddies of all physical
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scales propagate at a constant velocity in the outer part of the boundary layer. In the
inner layer, physically smaller eddies appear to be advected at a velocity proportional
to the local free-stream velocity while larger eddies move at the same constant velocity
observed in the outer part of the flow. This suggests that there may be two important
scales in the flow; however, to distinguish between them may require instantaneous
information along a plane (by using a PIV) rather than two-point information.

6. Turbulent kinetic energy budgets
The energy budgets of the present flow were found to differ radically from what

is seen in a zero-pressure-gradient boundary layer, where the turbulence energy is
concentrated close to its source of production, the intense shear near the wall. For
the present flow the role of the wall appears to be greatly reduced.

The conventional turbulent kinetic energy equation expressed in indicial notation is

Uj

∂

∂xj

(
1
2
uiui
)

= − ∂

∂xj

(
ujp+ 1

2
uiuiuf − 2

Re
uiSif

)
− uiujSif − 2

Re
sijsif , (6.1)

where ui = Ui + u′i, sij ≡ 1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, Sij ≡ 1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
.

The term on the left-hand side is the rate of transport of turbulent kinetic energy
by the mean motion. The first term on the right represents the transport of turbulent
energy by pressure fluctuations, velocity fluctuations, and viscous stresses respectively.
The viscous term is negligible compared to the remaining terms and was not included
in the energy balance. The pressure transport term is not directly measurable; it
is obtained from knowledge of the remaining terms. The second term on the right
represents the production of turbulence by the interaction of velocity fluctuations and
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mean strain. The final term on the right-hand side is the dissipation of turbulent energy
into thermal energy through the action of viscosity. Several different approximations
are used when measuring these terms.

The second term on the right-hand side of equation (6.1) is simplified for a two-
dimensional mean flow to

Production = (u′2 − v′2)∂U
∂x

+ u′v′
∂U

∂x
, (6.2)

and is dominated by the term involving the Reynolds stress. Production is plotted
along with the other terms of equation (6.1) in figure 17 for (x − x0)/θ0 = 295. The
production of turbulence energy has a strong maximum around y/θ = 3 where both
the mean gradient and the velocity correlation u′v′ have their respective maxima. This
is also the location of the inflection in the mean velocity profile as well as the maxima
of u′ and v′. The correspondence of the inflection point and the production maximum
indicates that the flow is dominated by a single inflectional instability, confirming the
results of stability theory that show that the peak of the amplitudes of the harmonic
oscillations occurs at the same y-location. The hot-wire anemometer is well suited
to the exploration of this important region. Because of small uncertainty in the data
taken at y/θ < 0.25 (see figure 5) this region was excluded from the energy budget.

The estimation of dissipation requires the use of an approximation because the
energy-dissipating eddies are too small to be properly resolved by conventional x-
wire probes. Since the turbulence intensity is large, Heskestad’s (1965) modification
of Taylor’s hypothesis was used to obtain the spatial derivative from the measured
temporal derivative. This modification replaces the local mean with the instantaneous
velocity, i.e.

∂ui

∂t
= −u ∂u

′
i

∂xj
(6.3)
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rather than
∂ui

∂t
= −U ∂u′i

∂xj
. (6.4)

Heskestad’s approximation is considered to be more accurate when large velocity fluc-
tuations are present. The energy-dissipating motions were considered to be isotropic,
which allows the turbulent strain rate tensor to be replaced by

Dissipation = 15

(
∂u1

∂x

)2

. (6.5)

The dissipation increases monotonically toward the wall, suggesting that a careful
exploration of this region is needed in order to understand this process next to the
surface. Dissipation seems to be entirely divorced from production and in this respect
it resembles the dissipation term in a wake, where the wake centreline corresponds to
the surface in the present flow.

For a two-dimensional boundary layer, the convection term becomes

Convection =
1

2
U
∂q′2

∂x
+

1

2
V
∂q′2

∂y
where q′2 = u′iu′i. (6.6)

Although the turbulence intensity plotted in non-dimensional coordinates does not
vary with downstream distance, the rapid growth of the boundary layer results in
a large spatial gradient of q′2; the first term in equation (6.6) therefore dominates
the advection. The peak of advection occurs at about y/θ = 4.5, a relatively small
distance inside the boundary layer. In this respect the convection term again resembles
the wake rather than the equilibrium boundary layer (see Townsend 1976, pp. 206–
207, 293). However, advection is considerably weaker in the inner part of the layer;
this contrasts dramatically with the wake, where advection is very strong near the
centreline. The advection term is relatively important for the present flow because
turbulence produced near the inflection is convected outwards, where dissipation
is inadequate to destroy it. This is in contrast to the zero-pressure-gradient case
where approximate equilibrium exists between dissipation and production; at present
production near the surface is the only term that is dominated by the x-derivative
because ∂u/∂y vanishes. The strong advection may be associated with a more rapid
increase in the turbulent length scale relative to the mean length scale.

The diffusion of energy by velocity fluctuations in a two-dimensional boundary
layer is given by

Diffusion =
1

2

(
∂

∂y
v′q′2 +

∂

∂x
u′q′2

)
, (6.7)

q′2 = u′2 + v′2 + w′2.
The second term is usually negligible in boundary layer type flows; this proved to
be the case here. Of the six terms in equation (6.7) four were measured. Previous
experiments showed w′2 to be approximately twice v′2 so v′w′2 was taken to be equal
to 2v′3 and u′w′2 was taken to be the same as 2u′v′2. The velocity fluctuations are seen
to transport turbulent energy away from its peak (located at about y/θ = 3) toward
the surface and toward the edge of the boundary layer. The pressure term is obtained
by subtracting the remaining terms on the right-hand side of equation (6.1) from
those on the left-hand side. Pressure transport has the same sign and approximately
the same magnitude as the velocity transport term in the outer part of the layer.
This again is analogous to the wake (see, for example, Hinze 1959), although the
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pressure transport term has a greater significance in this flow, particularly as the wall
is approached.

In order to identify and determine the scaling parameters of the large coherent
structures in the flow, power spectra of the velocity fluctuations were measured
(figure 18). In order to reduce the variance of the spectral estimate, the time series
of approximately three minutes of length, were divided into 64 equal segments.
The power spectrum was then computed for each segment, and the segments were
averaged. Only those time records obtained in the outer part of the boundary layer
show highly distinctive peaks, and then only for the normal component of the
fluctuations, v′. The Strouhal number of this peak, being approximately 0.04, closely
matches the Strouhal number observed in the mixing layer. This supports the view
that the outer part of the present flow resembles a mixing layer that in the mean
is in contact with the surface. Furthermore, since the shear layer is dominated by a
single, inflectional instability we expect the same to hold true for the present flow. No
peak is apparent in the u′-spectrum at any depth of the boundary layer. The spectra
exhibit good overall similarity in terms of the predominant frequencies; the general
increase in power with downstream distance shown is a result of the broadening of
the non-dimensional fluctuation profiles.

7. The effects of periodic excitation
7.1. The thin forced boundary layer (case A)

The influence of harmonic excitation on the mean flow for case A is shown in figure
19. The increase in streamwise velocities close to the wall suggests that momentum
is transferred from the outside toward the inner region. The shape of the velocity
profiles becomes fuller when compared with the unforced case, implying that the
flow is no longer on the verge of separation. Although the strongest effect of forcing
is observed near the surface, the thickness of the boundary layer was also reduced
(figure 20). A comparison between the different frequencies of excitation reveals
that the mean flow was most receptive to a forcing at 63 Hz, which corresponds
to a dimensionless frequency that is based on inflow conditions of fθ0/U0 = 0.008.
However, the average local dimensionless frequency in the region of interest (i.e. for
150 < (x − xo)/θo < 350) corresponding to the 63 Hz excitation is five times larger
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Figure 19. The effect of various frequencies of excitation on the mean flow distortion.

(i.e. fθ/Ue = 0.04). For the case of the classical mixing layer between two parallel
streams in the absence of pressure gradient this frequency would correspond to the
harmonic plane disturbance that had undergone the highest possible amplification by
the flow. As can be judged from figure 20, the momentum thickness is not affected
by the addition of excitation. This is due to the fact that the most significant change
in the mean velocity occurred close to the wall (i.e. in a region in which the velocity
is low) and thus the value of the integrand (U/Ue(1 − U/Ue)) is insensitive to these
changes. On the other hand, the periodic addition of momentum causes a decrease in
displacement thickness that is also maximum at fθ0/U0 = 0.008 and amounts to 16%
of the local δ∗. Thus the boundary layer becomes thinner, and the velocity profile
slightly fuller, when high-momentum fluid coming from the outer region is mixed with
the fluid in the inner region. The impact of the harmonic excitation on the turbulent
intensities may be seen in figure 21. The maximum level of the turbulence intensity
was reduced as a result of the excitation at all the forcing frequencies considered;
however, the reduction is also highest for the 63 Hz (fθ0/U0 = 0.008) excitation. A
slightly higher level of fluctuations can be observed close to the wall; however, the
accuracy of these hot-wire data is questionable due to possible rectification of the
hot-wire response during flow reversals. The observed increase in u′ may in fact serve
as an indication that the overall duration of the reverse flow periods has diminished
due to the excitation because degree of rectification was possibly reduced.

The mean velocity distribution scaled by the friction velocity uτ with respect to the
wall variable y+ = yUτν is presented in figure 22 for two streamwise locations. It
is evident that higher-frequency excitation reduced the maximum value of (u+)max =
Ue/uτ from its initial value of 80 to approximately 65. The linear region of this
semi-logarithmic plot was also used to estimate the friction velocity and to calculate
the friction coefficient cf = 2(uτ/Ue)

2 as well. The impact of harmonic excitation
on skin friction is summarized in figure 23(a). The lowest excitation frequency had
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no effect on cf for all the x values considered; however, when the frequency was
increased to 40 Hz, cf increased almost monotonically with increasing distance. At
the excitation frequency of 63 Hz cf was essentially constant throughout and was
approximately 60% higher than for the unexcited flow. This increase is a direct result
of the momentum transferred to the mean flow near the surface by the large eddies.
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The average skin friction over the measured interval is plotted in figure 23(b) together
with the shape factor, H . The latter also decreased due to the excitation.

In order to determine growth and decay of the pertubations introduced the coherent
energy was calculated according to

total coherent energy

∫ ∞
0

〈u′〉2(x, y)dy

/∫ ∞
0

〈u′〉2f(x0, y)dy,

contribution of fundamental

∫ ∞
0

〈u′〉2f(x, y)dy

/∫ ∞
0

〈u′〉2f(x0, y)dy,

contribution of 1st harmonic

∫ ∞
0

〈u′〉22f(x, y)dy

/∫ ∞
0

〈u′〉2f(x0, y)dy.


(7.1)

The results are plotted in figure 24. Surprisingly, the modes that have undergone the
highest amplification, like the 25 Hz mode (figure 24b), had no significant effect on the
mean flow. Decaying modes (like the 63 Hz excitation) on the other hand distorted
the mean velocity profile and removed the flow from the brink of separation. It seems
that the first harmonic of the forcing frequency (figure 24c) plays an important role
in distorting the mean flow.

7.2. The thick forced boundary layer (case B)

In the second test the upstream boundary layer was artificially thickened to θ0 =
4.5 mm, through the addition of roughness. The flow was now forced at two different
frequencies and two forcing levels. In order to retain dimensionless frequencies F =
fθ/Ue comparable with the former case, the forcing frequencies had to be lowered
since the average local momentum thickness was effectively doubled (see figure 6)
while the velocity of the free stream remained unaltered. The data presented contain
two excitation frequencies: 25 and 40 Hz. The actual forcing level had to be increased
as a consequence of the normalization defined in equation (2.1). The results presented
correspond to cµ = 0.06% and to cµ = 0.11%. The excitation accelerated the flow near
the slot, particularly for the higher forcing level. It also generated strong harmonic
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Figure 23. The effect of excitation on the skin friction and on H .
The range of integration in (b) is: (x2 − x1)/θ0 = 210.

frequencies at the beginning of the ramp. For the higher cµ, the first harmonic
frequency is even more energetic than the fundamental.

The influence of the harmonic excitation on the shape of the mean velocity profile
may be seen in figure 25. The results are similar to the thin, θ0 = 2.3 mm, inflow
conditions. The value of the excited reduced frequencies fθ0/U0 > 0.008 distorted
the mean velocity near the surface by increasing its value. Now, however, the entire
velocity profile appears to be fuller when compared to the results of figure 19. While
the increase in the initial, dimensionless forcing frequency from 0.007 to 0.011 does
not alter the ensuing mean velocity profile, the forcing level does. A higher forcing
level (filled symbols) results in a fuller shape of the mean velocity profile. Both forcing
levels remove the flow from the brink of separation.

Figure 26 summarizes the impact of the excitation on the integral length scales of
the flow. In contrast to the thin boundary layer experiment, the rate of spread of the
momentum thickness, θ, was now decreased slightly by the periodic excitation. This
is particularly obvious at larger values of x. The displacement thickness δ∗ is affected
more by the increase in amplitude than by the change in the frequency, for the two
frequencies considered. At the lower amplitude the reduction in (dδ∗/dx) was 12%
relative to its unforced value while for the higher amplitudes this reduction reached
20% of its unforced value. As a consequence the shape factor, H (figure 26c), was
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Figure 24. The amplification and decay of the imposed perturbations.

reduced from its initial value of 2.5 to 2.35 or 2.1 depending on the amplitude of the
excitation. The value of H , however, increases with increasing x while the concomitant
value of the friction coefficient (figure 26b) decreases with distance. This suggests that
the flow will eventually approach the brink of separation (at large values of x) in spite
of the level of the plane harmonic excitation that was applied. One may speculate
that the effect of decaying perturbations on the mean flow will eventually decrease at
larger distances.

The distributions of turbulent fluctuations for the two forcing frequencies and two
forcing levels are plotted in figure 27. Plane harmonic perturbations again reduced
the level of the turbulent fluctuations and the reduction increased with increasing the
input level. If turbulent intensity is a measure of the approaching separation then the
reduction of this intensity signifies stabilization of the flow. One may also note that
the scaling proposed in § 5 also applies to externally excited flows.

The local amplitudes of the forced perturbations and their harmonics, the am-
plification factors and the mean velocity field (both with and without the imposed
excitation) could provide one with sufficient data to predict the effects of excitation
on this flow. It is clear that the mean velocity profile that possesses an inflection
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Figure 25. The distortion of the mean velocity profiles by periodic excitation of case B.

point is very unstable in the inviscid sense and contributes to the amplification of
the imposed perturbations. A classical stability model can thus be used, provided the
divergence of the flow is accounted for in the same way as for the mixing layer (e.g.
Gaster, Kit & Wygnanski 1985). One may also account for the distortion of the mean
flow by considering the leading nonlinear interactions. This was not attempted in the
work presented here.

8. Further comparison with previous investigations
Finding a suitable basis for comparison with the results obtained by previous exper-

imenters proved difficult. In the case of Stratford (1959b), the region most comparable
with the present results (the region of constant shape factor) was specifically noted
as being possibly contaminated by secondary flows. It is clear that the developmen-
tal history of the two flows is very different. For the experiment reported here the
boundary-layer momentum thickness grows by a factor of 6 between the initiation
of the adverse pressure gradient and the first experimental profile; in Stratford’s case
the corresponding ratio is about 2.5. Stratford’s initial boundary layer profiles are far
from being under conditions of imminent separation, for example the reported shape
factor does not exceed 2.0 until the free-stream velocity ratio has fallen to 83% of its
initial value. This velocity ratio represents a very substantial pressure rise.

SK claim to have produced an equilibrium boundary layer close to separation;
however, their measured shape factor H is 2. In addition, the range of flow develop-
ment for which they report equilibrium conditions is very short. Over this range the
momentum thickness increased by only 42%, whereas for the present flow the ratio
of the momentum thickness between the final and the initial stations is 2.52 for case
A and exceeds 3 for case B. For an increase in θ that is comparable to SK’s even the
present measurements would tend to suggest the existence of equilibrium conditions,
since only the first two profiles would have been included in the analysis. Closer
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observations of SK’s results reveal substantial streamwise development, similar in
magnitude to the changes observed over a comparable distance for the present flow.

The experiment most similar to the present investigation, in both instrumentation
and procedure, is that of Spangenberg et al. (1967). The experimental facility was
similar to the one used here but the measurements were done on a flat surface rather
than on a curved wall. Provided the comparison is restricted to the region where
(dθ/dx) is constant, some results are in reasonable agreement. The exponent they
used for the free-stream velocity is, however, much larger (−0.34). The shape factors
in this region are comparable (≈ 2.5) but their maximum value of u+ was somewhat
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u′

U0

v′

U0

Spangenberg et al. ≈ 0.08 ≈ 0.055
Present data ≈ 0.10 ≈ 0.058

Table 1. Comparison of maxima in u′ and v′.

lower and it never exceeded 60. The turbulent intensities show the same overall
behaviour. In non-dimensional coordinates (in terms of momentum thickness) the
location of the maximum intensity moves away from the surface as the flow moves
downstream, while the magnitude of the peaks remain approximately constant. The
magnitude of the maxima in u′ and v′ are in reasonable agreement with the present
data, as shown in table 1. Significantly perhaps, the Reynolds stress correlation shows
the same basic trend as was seen in the present experiment, tending to decrease with
downstream distance.

9. Summary and conclusions
Measurements in a boundary layer that was maintained on the verge of separation

were made in order to establish its overall statistical behaviour. This boundary layer
is extremely sensitive to the upstream flow conditions and its rate of spread is
proportional to its initial thickness θ0. The shape factor of the resulting layer was
approximately 2.5, comparable with earlier attempts to produce this kind of flow.
Although the flow was driven as close to separation as practicable, the region of
zero wall stress predicted by Stratford (1959a) was not observed. This is because
the smallest increase in the adverse pressure gradient may cause a sudden, total
detachment of the flow.

The mean velocity and the turbulence intensity were found to have different
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similarity scales, indicative of a lack of equilibrium. Nevertheless the proposed scaling
(that is most probably not unique – see George & Castillo 1993; Castillo & George
2000) collapsed the turbulence intensities and the Reynolds stress fairly well and is
consistent with the momentum equation. Spectral measurements suggested that the
bulk of the flow field was affected by a single, inflectional instability mode. The
presence of the solid surface had no influence on the production of turbulence and
the convection velocity of the larger eddies. The loss of mean kinetic energy to
turbulence production is large in this flow and it may detract from the efficiency
of Stratford’s concept. Most of the dissipation, however, occurs below the inflection
point and attains its maximum close to the surface. The smaller eddies close to the
wall are also slower than the larger ones at the edge of the boundary layer and their
advection velocity seems to scale with the local free stream. External two-dimensional
excitation generated eddies that can be described by an instability of the mean motion
(Tumin, Likhachev & Wygnanski 1998). However, only the decaying, smaller eddies
increase the skin friction by distorting the mean velocity profile near the surface.
This nonlinear process needs to be investigated in the future as it may shed light
on the dissipation as well. Finally, the lack of equilibrium might be attributed to
surface curvature, which generates streamwise vortices due to centrifugal instability
of the mean motion. Such instability is not present when one investigates a flow
on the opposing, flat surface. Two-dimensional excitation may, interact and detract
from the coherence of the streamwise vortices. This phenomenon is currently under
investigation experimentally (P. Nishri & R. Neuendorf, private communication).

This research was supported by the Office of Naval Research, Grant # N00014-
94-1, monitored by Dr Patrick Purtell. Thanks are also due to Dr O. Likhachev for
his contribution to a better understanding of this experiment.

Addendum
The present experimental results were reprocessed in a manner suggested by George

& Castillo (1993), Castillo & George (2000, hereafter referred to as CG) who devel-
oped a similarity analysis for turbulent boundary layers in the presence of pressure
gradient. The major conclusions are listed below:

A.1. The pressure gradient parameter Λ

The similarity of the mean velocity profiles is good in spite of the choice of the
boundary layer thickness, δ, to normalize the distance measured from the wall (figure
28a). The local Reynolds numbers Re∗ = δu∗/ν for case A vary from 450 to 750 and
for case B from 700 to 1100. Uso(x) in CG’s notation is Ue.

The pressure gradient similarity parameter, Λ, may be determined from the slope
of either δ, δ∗, or θ when plotted against Ue (figure 28b). For case A, the average
value of Λ is 0.204; however, Λ = 0.170 for case B. Coupling CG’s definition of Λ
with the momentum integral equation,

Λ =
δ

(dδ/dx)

1

Ue

dUe

dx
,

dθ

dx
+ (H + 2)

θ

Ue

dUe

dx
= 0.
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Assuming θ = C1X, δ = C2X, the following expression for Λ is derived:

Λ =
1

H + 2
.

For case A where H = 2.5, this results in Λ = 0.22. This is close to the value found
using CG’s procedure (figure 28b). The agreement with case B is less good; perhaps
the rate of spread is not perfectly linear or Cf cannot be assumed to vanish.

A.2. The significance of the normal stresses

The following discussion is limited to case A only. The normal stress (figures 10 and
11) scale differently from the shear stress (figure 13) and therefore no similarity can be
obtained by normalizing these quantities by a single length scale δ. These quantities
are replotted in figure 28(c) in order to assess the possible significance of the normal
stress to the momentum balance. The data collapses by using (θRe0.2

θ ) as a length
scale and two different velocity scales, U0Ue for shear stress and U2

0 for the difference
(u′2 − v′2).

In order to differentiate the data (to assess the contribution of each term to the
momentum budget), the distribution was first smoothed by fitting a Gaussian to
the shear stress and a polynomial to the normal stress. The corresponding terms in
the momentum equation were calculated and then their ratio was established. The
distribution of the ratio between normal stress term and the shear stress term is shown
in figure 28(d) where a small region near the wall was excluded. Nevertheless the ratio
tends to infinity at the inflection point of the mean velocity profile, but otherwise it is
approximately constant. It is obvious that the normal stress plays an important role
in the outer region (above the inflection point), where it is equal to 20% of the shear
stress. Furthermore, this ratio is increasing in the direction of streaming.

By using the scaling laws suggested in the paper one may explore the increasing
significance of the normal stress terms in the direction of streaming as follows:

u′2 − v′2
U2

0

= Φ(η), u′v′ = U0UeΨ (η),

where η = y/(θRe0.2
θ ) = yν0.2Ueθ

−1.2 andUe = CuX
−0.21 and this leads to the expression

∂

∂x
(u′2 − v′2)

/
∂

∂x
(−u′v′) = CX0.37.

By calculating the average ratio for 0.7 < η < 0.9 and plotting it against X the
estimated exponent of 0.37 can be observed. Although the accuracy of this procedure
is limited, the increasing significance of the normal stresses with X is important.
A number exceeding 20% suggests that one cannot neglect the role of the normal
stresses in the similarity analysis.

A.3. A discussion of the suggested equilibrium

Although the normalized mean velocity profiles collapse fairly well (figure 28a and
Λ is almost constant in the streamwise direction, the flow is not necessarily in
equilibrium. Our measurements indicate that the mean motion, the shear stress and
the normal stresses require different scaling. Moreover the significance of the normal
stress increases in the direction of streaming. It thus represents typical behaviour of
a boundary layer that is not in a state of equilibrium.
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